Printable Organs Will Put an End to Transplant Lists

cwb-4c6wiaesw3eA woman living on a dialysis machine is grown a new kidney using her own cells. A father struggling with age-related vision loss has his eyesight restored. A soldier suffers extensive burns and has his skin regenerated.

This is a glimpse of the holy grail of regenerative medicine. The ultimate goal of the field is to develop therapies that restore normal function to diseased tissues and organs. Advances in 3D bioprinting, the process of fabricating functional human tissue outside the body in a layer-by-layer fashion, have pushed the envelope on what is considered possible in the field.

Let’s be clear, growing replacement organs — especially solid organs like kidneys, hearts and lungs is an exceptionally challenging goal. There is a sea of technical challenges that must be overcome before these organs can be produced en masse.

And beyond those hurdles, there is no guarantee of rapid translation from scientific discovery to clinical therapy as regulatory bodies will painstakingly seek evidence that these new organs work reliably with limited risks to the patients. But these are all challenges worth tackling.

By  | Singularity Hub


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s