
A team of researchers from Duke University in North Carolina is developing a novel 3D bioprinting material that could one day be used to create patient-specific cartilage implants. The innovative cartilage-mimicking material is made from a hydrogel mixture and could be used to 3D print menisci implants to repair damaged knees.
To anyone who has suffered a knee injury and has been instructed to wear a knee brace for pretty much the rest of their lives, the news coming out of Duke University will be very exciting. In a paper recently published in the journal ACS Biomaterials Science and Engineering, a team of researchers from Duke University has described its process of developing a hydrogel-based material that can be 3D printed into custom, cartilage-mimicking structures.
While the project is still in its early stages, the researchers did demonstrate how a low-cost $300 3D printer could be used to 3D print the biocompatible material into a meniscus-shaped structure which was then implanted onto a plastic model of a knee.
“We’ve made it very easy now for anyone to print something that is pretty close in its mechanical properties to cartilage, in a relatively simple and inexpensive process,” explained Benjamin Wiley, an associate professor of chemistry at Duke University who contributed to the research paper.
Menisci, for those unfamiliar with the human knee’s anatomy, are a pair of cartilage-based “shock absorbers” which are located between the thigh and shin bones. They are essentially responsible for cushioning and protecting our bones with every step, jump, and movement we take. But while our menisci protect our knees, they are not impervious to damage themselves, as even minor knee injuries can damage the cartilage, resulting in pain and potentially causing such conditions as arthritis.
By Tess | 3ders.org
Be the first to comment