Duke University’s cartilage-mimicking 3D printed hydrogels could help repair damaged knees

A team of researchers from Duke University in North Carolina is developing a novel 3D bioprinting material that could one day be used to create patient-specific cartilage implants. The innovative cartilage-mimicking material is made from a hydrogel mixture and could be used to 3D print menisci implants to repair damaged knees.

To anyone who has suffered a knee injury and has been instructed to wear a knee brace for pretty much the rest of their lives, the news coming out of Duke University will be very exciting. In a paper recently published in the journal ACS Biomaterials Science and Engineering, a team of researchers from Duke University has described its process of developing a hydrogel-based material that can be 3D printed into custom, cartilage-mimicking structures.

While the project is still in its early stages, the researchers did demonstrate how a low-cost $300 3D printer could be used to 3D print the biocompatible material into a meniscus-shaped structure which was then implanted onto a plastic model of a knee.

“We’ve made it very easy now for anyone to print something that is pretty close in its mechanical properties to cartilage, in a relatively simple and inexpensive process,” explained Benjamin Wiley, an associate professor of chemistry at Duke University who contributed to the research paper.

Menisci, for those unfamiliar with the human knee’s anatomy, are a pair of cartilage-based “shock absorbers” which are located between the thigh and shin bones. They are essentially responsible for cushioning and protecting our bones with every step, jump, and movement we take. But while our menisci protect our knees, they are not impervious to damage themselves, as even minor knee injuries can damage the cartilage, resulting in pain and potentially causing such conditions as arthritis.

By Tess | 3ders.org


About Peter Coffaro 605 Articles
A growth-driven and strategic executive, Peter Coffaro commands more than 20 years of progressive management success within the medical device industry. As a District Sales Manager for Stryker Orthopaedics, Peter was responsible for managing and directing a regional sales force to achieve sales and profit goals within the Rocky Mountain region. Previously, he was the Director of Sales & Marketing for Amp Orthopedics. In this role, Peter was responsible for planning, developing, and leading all sales and marketing initiatives. Peter is a former orthopedic distributor in the Pacific Northwest. He has also worked with DePuy Orthopaedics as well as Zimmer, and held positions in sales, sales training, and sales management. Peter has an extensive background in organizational development, business development, sales management, negotiating and P&L management. Peter holds a B.S. degree in Biology from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


This site uses Akismet to reduce spam. Learn how your comment data is processed.