Innovations in Orthopedic Devices and Procedure Improvement Solutions to Transform the Industry

The orthopedic devices industry will continue to be a promising area in the global medical technology space, and is expected to rank third in sales after cardiology and in-vitro diagnostics by 2020. According to Frost & Sullivan, the industry generated revenue of $39.40 billion in 2016; revenue is expected grow at a compound annual growth rate (CAGR) of 3.3% to reach $44.82 billion in 2020. The emergence of advanced technologies and the rise in orthopedic disorders will drive industry growth. Some of the latest innovations in the industry are discussed below.

Robotic Surgeries Involve Fewer and Smaller Incisions, Reducing Postoperative Care

Orthopedic surgeries that incorporate robotics are less invasive and offer reproducible precision, resulting in shorter hospital stays and faster recovery times. A clinic in Switzerland, La Source, reported a decrease in average hospitalization from 10 to 6 days by using surgical robots. However, this technology is still expensive to acquire, and strong, evidence-based studies are needed to demonstrate that robotic technology leads to better outcomes.

The da Vinci Surgical System became the first U.S. Food and Drug Administration (FDA)-approved robotic surgery system in 2000. More companies are investing in this technology to provide better navigation during operations or to obtain 3-D scans that help in the design of customized joints.

Companies investing in robotics include Zimmer Biomet, Stryker, Smith & Nephew, Mazor Robotics, Think Surgical, OMNlife Science Inc., Intuitive Surgical and Verb Surgical. Zimmer Biomet, for example, added the ROSA robotic device used for brain and spine surgeries to its product portfolio through its acquisition of Medtech. Stryker acquired Mako Surgical Corp. for total knee construction and total hip replacement robotic products, and Smith & Nephew acquired Blue Belt Holdings for a robotic-assisted surgery product for partial knee replacements.

Orthobiologic Technologies Accelerate the Healing Process

Orthobiologics harness the regenerative potential of the cells in the human body. Orthobiologics are made from substances naturally found in the body and are used to improve the healing of broken bones and injured muscles, ligaments and tendons. They include bone grafts, growth factors, stem cells, platelet-rich plasma, autologous blood, and autologous conditioned serum. The mesenchymal stem cells (MSCs) found in bone marrow have proved to be effective in the development of the desired tissues.

Recent innovations in this field, including growth factor and stem cell-based strategies, will lead to faster recoveries. Another innovation is drug-eluting bone grafts, which can be used to deal with problems such as orthopedic surgical infection. Clinical studies show that growth factors can accelerate the healing process. Stem cells can continually self-regenerate and can differentiate into any cell type, offering an unparalleled source of regenerative medicine technology. Below are examples of musculoskeletal treatments using stem cells.

Bone fractures and non-unions: Progenitor cells give rise to osteoblasts, which become mature bone cells. This stimulates bone growth and promotes healing of the injured bone.

Articular cartilage: The lining of joints is called articular cartilage. Stem cells create the growth of primary hyaline cartilage, which restores joint surface.

Ligaments and tendons: MSCs develop into cells that are specific for connective tissue. This allows faster healing of ligaments and tendons.

Spine: The degeneration of intervertebral discs is a common cause of back pain. MSC injections for degenerative discs have been shown to reduce the incidence of lower back pain and regenerate disc tissue.

Companies investing in orthobiologics include Stryker (biomaterials for trauma, spine, and joint replacements), Johnson & Johnson subsidiary DePuy Synthes (spinal care solutions), Zimmer Biomet (advanced biologics solution for joint preservation, cartilage repair products, and osteoarthritis treatment), Smith & Nephew (joint replacement systems and bio-implants), ISTO Technologies (novel bone grafts and concentrated bone marrow aspirate systems for new bone formation in spinal fusions), LifeNet Health (bio-implants for joint repair and trauma),  Wright (bone void fillers) and Exactech (spinal and orthobiologic solutions).

Biotechnology companies are using stem cells for orthopedic treatment. For example, BioTime focuses on stem cell therapies for age-related degenerative diseases, IntelliCell BioSciences on adipose-derived stem cells for orthopedic disorders, and Bio-Tissue on orthobiological solutions for cartilage defects.

By Frost & Sullivan | ASME

Image Credit: Stryker


About Peter Coffaro 833 Articles
A growth-driven and strategic executive, Peter Coffaro commands more than 20 years of progressive management success within the orthopedic industry. Recognized by as one of the top medical sales influencers in the industry; he has 10 years of combined sales management experience and has held positions as a Director, General Manager and Distributor. Peter has worked for some of the top orthopedic companies in the world - Zimmer, DePuy and Stryker. He is also the founder of OrthoFeed: a popular blog that covers orthopedic news and emerging medical technologies. Peter is a three-time Hall of Fame award winner at Johnson and Johnson and has an extensive background in organizational development, business development, sales management, digital marketing and professional education. Peter holds a B.S. degree in Biology from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


This site uses Akismet to reduce spam. Learn how your comment data is processed.