Bioactive titanium implant material with multifunctional nano-bio-interface

The implantation of orthopaedic devices is associated with a high risk of post-operative complications that increases substantially with each revision surgery.

Revision surgeries are required primarily for two reasons: 1) implants frequently do not integrate successfully leading to loosening and; 2) bacterial infections that result in biofilm formation.

In the last 10 years, there were 410,767 revision hip replacements and and 480,440 knee replacements in Australia alone (Source: The Australian Orthopaedic Association National Joint Replacement Registry, 2016 Annual Report); and the number of these replacements conducted annually continues to grow.

Although the cumulative rate of revisions over a 10 year period is less than 5% for all patients, it is unacceptably high at 16% for patients suffering from bone-related conditions such as osteoporosis, osteoarthritis and ostomalacia or having poor bone structure.

The situation is similar with knee replacement surgeries, with up to 10.5% of knee implants requiring revision. The significant increase in the number of patients requiring revision surgery is driven by our aging population, who more frequently have poor bone quality and worse implant integration.

An international research team from Japan and Australia now have proposed a two-pronged strategy to address this outstanding clinical problem by combatting infections and providing bioactivity for titanium implants. They report their findings in Nanomaterials (“Two-in-One Biointerfaces—Antimicrobial and Bioactive Nanoporous Gallium Titanate Layers for Titanium Implants”)

“Our nanostructured surfaces simultaneously are highly antimicrobial as well as bioactive,” Dr. Wojciech Chrzanowski, a Senior Lecturer at the Australian Institute for Nanoscale Science and Technology, tells Nanowerk. “The goal of combining both functions without inducing cytotoxicity has thus far proved elusive. Unlike other approaches that use highly toxic antimicrobial compounds and induce undesired cytotoxicity, our approach not only exhibits outstanding antimicrobial activity but also it promotes the formation of bone-like structures.”

By Michael Berger | Nanowerk

Image Credit: Michael Berger/Nanowerk


About Peter Coffaro 629 Articles
A growth-driven and strategic executive, Peter Coffaro commands more than 20 years of progressive management success within the medical device industry. As a District Sales Manager for Stryker Orthopaedics, Peter was responsible for managing and directing a regional sales force to achieve sales and profit goals within the Rocky Mountain region. Previously, he was the Director of Sales & Marketing for Amp Orthopedics. In this role, Peter was responsible for planning, developing, and leading all sales and marketing initiatives. Peter is a former orthopedic distributor in the Pacific Northwest. He has also worked with DePuy Orthopaedics as well as Zimmer, and held positions in sales, sales training, and sales management. Peter has an extensive background in organizational development, business development, sales management, negotiating and P&L management. Peter holds a B.S. degree in Biology from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


This site uses Akismet to reduce spam. Learn how your comment data is processed.