New surgical robots are about to enter the operating theatre

Robots have been giving surgeons a helping hand for years. In 2016 there were about 4,000 of them scattered around the world’s hospitals, and they took part in 750,000 operations. Most of those procedures were on prostate glands and uteruses. But robots also helped surgeons operate on kidneys, colons, hearts and other organs. Almost all of these machines were, however, the products of a single company. Intuitive Surgical, of Sunnyvale, California, has dominated the surgical-robot market since its device, da Vinci, was cleared for use by the American Food and Drug Administration in 2000.

That, though, is likely to change soon, for two reasons. One is that the continual miniaturisation of electronics means that smarter circuits can be fitted into smaller and more versatile robotic arms than those possessed by Intuitive’s invention. This expands the range of procedures surgical robots can be involved in, and thus the size of the market. The other is that surgical robotics is, as it were, about to go generic. Many of Intuitive’s patents have recently expired. Others are about to do so. As a result, both hopeful startups and established health-care companies are planning to enter their own machines into the field.

Though the word “robot” suggests a machine that can do its work automatically, both da Vinci and its putative competitors are controlled by human surgeons. They are ways of helping a surgeon wield his instruments more precisely than if he were holding them directly. Da Vinci itself has four arms, three of which carry tiny surgical instruments and one of which sports a camera. The surgeon controls these with a console fitted with joysticks and pedals, with the system filtering out any tremors and accidental movements made by its operator. That, combined with the fact that the system uses keyhole surgery (whereby instruments enter the patient’s body through small holes instead of large cuts, making procedures less invasive), reduces risks and speeds up recovery. But at more than $2m for the equipment, plus up to $170,000 a year for maintenance, da Vinci is expensive. If a new generation of surgical robots can make things cheaper, then the benefits of robot-assisted surgery will spread.

Arms and the man

This summer Cambridge Medical Robotics (CMR), a British company, unveiled Versius, a robot that it hopes to start selling next year (a picture of the machine can be seen above). Unlike da Vinci, in which the arms are all attached to a single cart, Versius sports a set of independent arms, each with its own base. These arms are small and light enough to be moved around an operating table as a surgeon pleases, or from one operating theatre to another as the demands of a hospital dictate. This way, the hospital need not dedicate a specific theatre to robotic surgery, and the number of arms can be tailored to the procedure at hand.

Unlike a da Vinci arm, which is like that of an industrial robot, a Versius arm is built like a human one. It has three joints, corresponding to the shoulder, the elbow and the wrist. This means, according to Martin Frost, CMR’s chief executive, that surgeons will be able to use angles and movements they are already familiar with, instead of having to learn a robot-friendly version of a procedure from scratch. The company has yet to decide how much the arms will cost, but Mr Frost expects that operations which employ Versius will work out to be only a few hundred dollars more expensive than those conducted by humans alone. With da Vinci, the difference can amount to thousands.

Versius will compete with da Vinci on its own turf—abdominal and thoracic surgery. Others, though, want to expand robotics into new areas. Medical Microinstruments (MMI), based near Pisa, in Italy, has recently shown off a robot intended for reconstructive microsurgery, a delicate process in which a surgeon repairs damaged blood vessels and nerves while looking through a microscope. This robot allows the surgeon to control a pair of miniature robotic wrists, 3mm across, that have surgical instruments at their tips.

By The Economist

Image Credit: Cambridge Medical Robotics

READ MORE

About Peter Coffaro 1149 Articles

A growth-driven and strategic executive, Peter Coffaro commands more than 20 years of progressive management success within the medical device industry. As a District Sales Manager for Stryker Orthopaedics, Peter was responsible for managing and directing a regional sales force to achieve sales and profit goals within the Rocky Mountain region. Previously, he was the Director of Sales & Marketing for Amp Orthopedics. In this role, Peter was responsible for planning, developing, and leading all sales and marketing initiatives. Peter is a former orthopedic distributor in the Pacific Northwest. He has also worked with DePuy Orthopaedics as well as Zimmer, and held positions in sales, sales training, and sales management. Peter has an extensive background in organizational development, business development, sales management, negotiating and P&L management. Peter holds a B.S. degree in Biology from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


*