
In a world first, Australian researchers have harnessed the power of diamonds in a breakthrough that could radically improve the way human bodies accept biomedical implants.
Researchers from RMIT University have for the first time successfully coated 3D printed titanium implants with diamond.
The development is the first step toward 3D printed diamond implants for biomedical uses and orthopaedics — surgical procedures involving the human musculoskeletal system.
While titanium offers a fast, accurate and reliable material for medical grade and patient-specific implants, our bodies can sometimes reject this material.
This is due to chemical compounds on titanium, which prevent tissue and bone from interacting effectively with biomedical implants. Synthetic diamond provides an inexpensive solution to this problem.
The breakthrough has been made by biomedical engineer Dr Kate Fox and her team at RMIT’s School of Engineering.
“Currently the gold standard for medical implants is titanium but too often titanium implants don’t interact with our bodies the way we need them to,” Fox said.
“To work around this, we have used diamond on 3D scaffolds to create a surface coating that adheres better to cells commonly found in mammals.
“We are using detonation nanodiamonds to create the coating, which are cheaper than the titanium powder.
“This coating not only promotes better cellular attachment to the underlying diamond-titanium layer, but encouraged the proliferation of mammalian cells. The diamond enhances the integration between the living bone and the artificial implant, and reduces bacterial attachment over an extended period of time.
“Not only could our diamond coating lead to better biocompatibility for 3D-printed implants, but it could also improve their wear and resistance. It’s an exceptional biomaterial.”
By James Giggacher | RMIT University
Image Credit: RMIT University
Be the first to comment