Dissolvable device could signal how recovery’s going after orthopedic surgery

Stretchable strain and pressure sensor might one day guide rehabilitation

Each year, doctors in the U.S. perform 14 million orthopedic surgeries. Once patients are sewn up, their recovering tissues can be monitored only via infrequent snapshots taken with ultrasound or magnetic resonance imaging. A new, implantable sensor could provide real-time information about how repaired tissues are functioning post-surgery to guide rehabilitation. Because the sensor is made out of biodegradable components, the patient’s body will break it down over time, eliminating the need for another surgery to remove it.

Zhenan Bao, a chemical engineering professor at Stanford University, and Paige Fox, a professor of surgery at Stanford University Medical Center, led the team that developed the sensor. It detects strain and pressure independently, which is important for understanding the healing process after a procedure, such as a tendon repair surgery, Bao notes. “Normally, pressure sensors are also sensitive to strain and vice versa. We had to invent a new device structure so that the pressure reading and the strain reading are not going to interfere with each other.”

Choosing the right materials was key, Bao says. The researchers started with known biodegradable elastomers and tweaked their cross-linking density to optimize the sensor response and biocompatibility, she adds.

The device’s architecture (shown) is made up of poly(glycerol sebacate) as a dielectric layer for the pressure sensor’s capacitor and also as a stretchable nonsticking layer that allows the electrodes to slide relative to one another. The strain sensor and device’s packaging uses poly(octamethylene maleate [anhydride] citrate). The team made electrodes by evaporating magnesium onto a layer of biodegradable polylactic acid (Nat. Electron.2018, DOI: 10.1038/s41928-018-0071-7). Next, the researchers want to create a biodegradable wireless transmission system that can communicate the sensor’s data from inside the body.

By Bethany Halford | Chemical & Engineering News

Image Credit: Nat. Electron.

READ MORE

About Peter Coffaro 464 Articles
A growth-driven and strategic executive, Peter Coffaro commands more than 20 years of progressive management success within the medical device industry. As a District Sales Manager for Stryker Orthopaedics, Peter was responsible for managing and directing a regional sales force to achieve sales and profit goals within the Rocky Mountain region. Previously, he was the Director of Sales & Marketing for Amp Orthopedics. In this role, Peter was responsible for planning, developing, and leading all sales and marketing initiatives. Peter is a former orthopedic distributor in the Pacific Northwest. He has also worked with DePuy Orthopaedics as well as Zimmer, and held positions in sales, sales training, and sales management. Peter has an extensive background in organizational development, business development, sales management, negotiating and P&L management. Peter holds a B.S. degree in Biology from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.