
Imagine this. On a dark, cold morning in February 2023, the Cleveland Clinic Orthopedic staff receives a worrying electronic note from one of their total hip patients, 64 year-old Samantha Ingram. This note, however, was not written by Samantha, but by Samantha’s hip replacement. The note from her implant explains that a local Staph infection is brewing. It details the location of the infection and the bacteria level present. The office nurse contacts Samantha to bring her into the office, even though she insists she is fine. She arrives that afternoon. She receives oral medication and a minor procedure that locally treats the infection. Then, she is sent home with some new meds. Success. Samantha has avoided pain, an implant loosening complication, and a future hip-revision operation. The smart implant has done its job.
In the future, I believe most joint replacements, trauma nails/plates, and spine devices will contain embedded sensors that allow the health care system to detect early problems, proactively treat these problems, and provide better care for the patient. These implant sensors will measure loads, temperature, motion, enzymes, bacteria levels, pH, particulates, etc.
Surprisingly, as we sit here in 2018, the technology exists for implantable sensors. Still, the top10 Ortho companies are not yet on board – Stryker, DePuy/Synthes, Zimmer/Biomet, S+N, Medtronic Spine, DJO Global, IART, NUVA, Globus Medical, Wright Medical. They have not yet invested in the R&D and regulatory processes for smart implants. As history tells us, this disruptive technology will come from small, risk-taking startups. Startups ask, “If an implant could talk…what would a healthcare provider want to hear to treat the patient more efficiently?” In other words, what is happening inside the body, near the device? And for what smart feature would a hospital pay a premium?
Image Credit: Tiger Buford / LinkedIn
Be the first to comment