Why customisation and speed are top additive manufacturing benefits for orthopaedics

The American College of Surgeons has called for hospitals to “minimise, postpone or even cancel” elective procedures until the coronavirus (Covid-19) outbreak slows down. Hospitals and surgical centres are beginning to embrace this idea as a way to effectively deal with the impact of this unprecedented global pandemic on society. This response may significantly affect the orthopaedic surgery community and its suppliers, as many orthopaedic procedures are considered elective. However, it is likely too soon to fully understand the impact this crisis will ultimately have on the orthopaedics market. Despite this situation, device manufacturers still need to explore new, inventive and cost-effective ways to continue moving the industry forward.

One such opportunity is to drive innovation and improve medical outcomes with additive manufacturing of surgical instruments and implants using thermoplastics. The two methods – Fused Filament Fabrication (FFF) and Selective Laser Sintering (SLS), offer complementary approaches. The first is ideal for low volume, customised parts with complex geometries that can be produced at or close to the point of care. The second lends itself to centralised production of higher-volume components with complex geometries. Together, these technologies offer the orthopaedic industry the proven advantages of polymers over traditional metal (lighter weight, high-performance properties, support for bone ingrowth) plus the unique capabilities of additive manufacturing, including patient/surgeon personalisation and production of complex designs.

Printing surgical instruments

Additive manufacturing of orthopaedic components offers the ability to move beyond standard designs to provide instruments that are customised to the surgeon, the procedure and/or the patient. Templates, guides and fixtures can potentially be designed and printed at or near the point of care using small FFF printers. These machines build a part in layers through the deposition of heated, extruded plastic filament.

In SLS, a laser heats a powdered material to just above its melting point, bonding it to create a 3D structure. SLS equipment typically can print multiple components simultaneously, making it a good choice for producing complex instruments when intermediate volumes are required, such as for orthopaedic trials.

Using specialty polymers, alone or with metal for these applications, allows manufacturers to reduce the overall weight of individual instruments as well as the total set weight of surgical trays. These materials also enable improved ergonomics to reduce surgeon fatigue and build in functionality through part consolidation for enhanced designs and faster production.

by Sophia SongDane Waund | Medical Plastic News

Image Credit:  Sophia Song & Dane Waund / Medical Plastic News


About Peter Coffaro 510 Articles
Peter Coffaro is a growth-driven and strategic executive with over 25 years of progressive management success in the medical device industry. With a proven track record and recognized expertise, Peter has established himself as one of the top influencers in medical sales, as acknowledged by prestigious publications such as the World Journal of Orthopedics, Exponential Healthtech, and MedReps.com. Throughout his career, Peter has accumulated 10 years of combined sales management experience, excelling in various roles including Director, General Manager, Distributor, and Vice President. He has worked for industry-leading orthopedic companies such as Zimmer, DePuy, and Stryker, solidifying his deep knowledge and network within the field. Peter’s passion for innovation and emerging technologies led him to found OrthoFeed, an award-winning blog covering digital orthopedic news and emerging medical technologies. Through this platform, he stays at the forefront of the industry and contributes to the dissemination of valuable insights. Peter is a three-time Hall of Fame award winner at Johnson and Johnson, demonstrating his exceptional contributions and impact on the organization. His expertise extends to areas such as organizational development, business development, sales management, digital marketing, and professional education. Peter earned a B.S. degree in Biology and Chemistry from Northern Illinois University, further complementing his comprehensive understanding of the medical field. With his wealth of experience, strategic mindset, and dedication to advancing healthcare, Peter Coffaro is a valuable asset and leader in the medical device industry.

Be the first to comment

Leave a Reply

Your email address will not be published.


This site uses Akismet to reduce spam. Learn how your comment data is processed.