Why customisation and speed are top additive manufacturing benefits for orthopaedics

The American College of Surgeons has called for hospitals to “minimise, postpone or even cancel” elective procedures until the coronavirus (Covid-19) outbreak slows down. Hospitals and surgical centres are beginning to embrace this idea as a way to effectively deal with the impact of this unprecedented global pandemic on society. This response may significantly affect the orthopaedic surgery community and its suppliers, as many orthopaedic procedures are considered elective. However, it is likely too soon to fully understand the impact this crisis will ultimately have on the orthopaedics market. Despite this situation, device manufacturers still need to explore new, inventive and cost-effective ways to continue moving the industry forward.

One such opportunity is to drive innovation and improve medical outcomes with additive manufacturing of surgical instruments and implants using thermoplastics. The two methods – Fused Filament Fabrication (FFF) and Selective Laser Sintering (SLS), offer complementary approaches. The first is ideal for low volume, customised parts with complex geometries that can be produced at or close to the point of care. The second lends itself to centralised production of higher-volume components with complex geometries. Together, these technologies offer the orthopaedic industry the proven advantages of polymers over traditional metal (lighter weight, high-performance properties, support for bone ingrowth) plus the unique capabilities of additive manufacturing, including patient/surgeon personalisation and production of complex designs.

Printing surgical instruments

Additive manufacturing of orthopaedic components offers the ability to move beyond standard designs to provide instruments that are customised to the surgeon, the procedure and/or the patient. Templates, guides and fixtures can potentially be designed and printed at or near the point of care using small FFF printers. These machines build a part in layers through the deposition of heated, extruded plastic filament.

In SLS, a laser heats a powdered material to just above its melting point, bonding it to create a 3D structure. SLS equipment typically can print multiple components simultaneously, making it a good choice for producing complex instruments when intermediate volumes are required, such as for orthopaedic trials.

Using specialty polymers, alone or with metal for these applications, allows manufacturers to reduce the overall weight of individual instruments as well as the total set weight of surgical trays. These materials also enable improved ergonomics to reduce surgeon fatigue and build in functionality through part consolidation for enhanced designs and faster production.

by Sophia SongDane Waund | Medical Plastic News

Image Credit:  Sophia Song & Dane Waund / Medical Plastic News

READ MORE

About Peter Coffaro 487 Articles
A growth-driven and strategic executive, Peter Coffaro commands more than 25 years of progressive management success within the medical device industry. Recognized by the World Journal of Orthopedics, Exponential Healthtech, and MedReps.com as one of the top medical sales influencers in the industry; he has 10 years of combined sales management experience and has held positions as a Director, General Manager, Distributor, and Vice President. Peter has worked for some of the top orthopedic companies in the world - Zimmer, DePuy, and Stryker. He is also the founder of OrthoFeed: a popular blog that covers digital orthopedic news and emerging medical technologies. Peter is a three-time Hall of Fame award winner at Johnson and Johnson and has an extensive background in organizational development, business development, sales management, digital marketing, and professional education. Peter holds a B.S. degree in Biology and Chemistry from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


*


This site uses Akismet to reduce spam. Learn how your comment data is processed.