How 3D printing and robots improve knee replacement surgery

Stryker uses additive manufacturing and robotics to promote bone/implant bonding and shorten post-surgery recovery times

Total knee replacement surgery has intrigued me since 1979, when my grandfather had the procedure performed on both knees. The prostheses of that era were designed to anatomically mimic the motion of a knee joint, making them superior to their hinge-action predecessors of the ’60s.

But as I’ve discovered since undergoing my own knee replacement surgery last November, today’s prostheses, surgical techniques, and patient outcomes have vastly improved since Gramps was rolled into the operating room. Advancements in what’s medically known as total knee arthroplasty (TKA) include materials developed specifically for implants and their 3D-printed components, as well as the use of surgical-assist robots.

To learn more about TKA and 3D printing’s role in producing implants, I contacted Stryker Corp., the manufacturer of my new knee and the robot that assisted with its implantation.

I spoke with Robert Cohen, president of Stryker’s Digital, Robotics, and Enabling Technologies entity. Cohen, who earned multiple engineering degrees at New Jersey Institute of Technology in the 1980s, has spent his career manufacturing implants. He also has unfettered enthusiasm for how digital technologies like 3D printing help engineers improve TKA surgery, with “help” being the operative word.

He describes additive manufacturing as a “tool” that aids engineers in discovering solutions to problems that can’t be solved by conventional manufacturing methods. “3D printing by itself is nothing but fancy printing—another way to manufacture.”

What drives innovation are the “skillsets of people who want to solve problems in new ways and come up with, in our case, new implants. 3D printing is the enabler that [makes their] designs reality,” he said.

Stryker began adopting additive manufacturing technologies in 2002. Besides knees, the global corporation headquartered in Kalamazoo, Mich., also 3D-prints hips, spinal cages, and other implantable devices. AM allows the company to produce prosthetic geometries that would be impossible or impractical to manufacture by traditional methods. An example is additively manufactured scaffolds that promote biologic fixation—the growth of bone into a prosthetic.

By Don Nelson | The Additive Report

Image Credit: Stryker


About Peter Coffaro 489 Articles
A growth-driven and strategic executive, Peter Coffaro commands more than 25 years of progressive management success within the medical device industry. Recognized by the World Journal of Orthopedics, Exponential Healthtech, and as one of the top medical sales influencers in the industry; he has 10 years of combined sales management experience and has held positions as a Director, General Manager, Distributor, and Vice President. Peter has worked for some of the top orthopedic companies in the world - Zimmer, DePuy, and Stryker. He is also the founder of OrthoFeed: a popular blog that covers digital orthopedic news and emerging medical technologies. Peter is a three-time Hall of Fame award winner at Johnson and Johnson and has an extensive background in organizational development, business development, sales management, digital marketing, and professional education. Peter holds a B.S. degree in Biology and Chemistry from Northern Illinois University.

Be the first to comment

Leave a Reply

Your email address will not be published.


This site uses Akismet to reduce spam. Learn how your comment data is processed.